Article ID Journal Published Year Pages File Type
5395335 Computational and Theoretical Chemistry 2011 8 Pages PDF
Abstract
Reaction channel 2 is found to be four times faster than reaction channel 1. The rate coefficient for the title reaction was computed to be k = (1.81 ± 0.17) × 10−13 [exp (1532 ± 25)/T] cm3 molecule−1 s−1 in the temperature range of 200 and 400 K using B3LYP/6-311G(2df,2pd) level of theory. Theoretically computed enthalpy of the reaction and rate coefficients using B3LYP/6-311G(2df,2pd) level of theory were found to be in good agreement with the experimentally measured ones.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,