Article ID Journal Published Year Pages File Type
5395762 Journal of Electron Spectroscopy and Related Phenomena 2015 11 Pages PDF
Abstract
Topological materials host protected surface states with locked spin and momentum degrees of freedom. The helical Dirac character of the surface states, of tremendous scientific interest, stems from the interplay of the bulk band structure and surface Rashba spin-orbit interaction. The semimetal Sb offers a pristine platform to examine the Rashba origins of the Dirac-like topological surface states. Here we present an overview of our momentum-resolved scanning tunneling spectroscopy studies of Sb, over an extended (300 meV) energy range, revealing several features characteristic of the emergence of the Dirac-like surface states from a conventional Rashba-type parabolic dispersion. Our work provides a conceptual framework to create and investigate tunable Rashba states with topological properties.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,