Article ID Journal Published Year Pages File Type
5395997 Journal of Electron Spectroscopy and Related Phenomena 2014 6 Pages PDF
Abstract
We studied both occupied and unoccupied states of titanyl phthalocyanine (TiOPc) films formed on an octanethiolate self-assembled monolayer (SAM) on an Au(1 1 1) surface fabricated in a wet chemical process using two-photon photoemission (2PPE) spectroscopy. A 1.90-nm-thick layer of TiOPc formed an unoccupied state at 2.9 eV above the Fermi level. This state was resonantly enhanced at 4.3-4.4 eV photon energy, suggesting that electrons were excited from the highest occupied molecular orbital of TiOPc. The 2PPE measurements of photon energy dependence and light polarization selectivity revealed that the unoccupied state originates from a charge transfer exciton not observed in organic thin films deposited on bare metallic substrates. The formation of a charge transfer exciton implies that the SAM strongly insulates the molecular monolayer.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,