Article ID Journal Published Year Pages File Type
5396704 Journal of Electron Spectroscopy and Related Phenomena 2009 6 Pages PDF
Abstract
We study the electronic structure of tin-phthalocyanine (SnPc) molecules adsorbed on a Ag(1 1 1) surface by high-resolution photoelectron spectroscopy. We particularly address the effect of different SnPc coverages on the interaction and charge transfer at the interface. The results give evidence for a covalent molecule-substrate interaction, which is temperature and coverage dependent. The valence and core level spectra as well as the work function measurements allow us monitoring subtle differences in the strength of the interface interaction, thus demonstrating the sensitivity of the methods. The results consistently show the effect of charge exchange between substrate and molecules which obviously leads to a net charge transfer into the SnPc molecules, and which is increased with decreasing coverage. Surprisingly, the Sn3d core levels are neither effected by variations of charge transfer and interaction strength, nor by a possible “Sn-up” or “Sn-down” orientation, which have been observed for sub-monolayers.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,