Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5398917 | Journal of Luminescence | 2015 | 7 Pages |
Abstract
Carbon nanoflake films (CNFFs) were directly synthesized by plasma-enhanced hot filament chemical vapor deposition. The results of field emission scanning electron microscope, transmission electron microscope, micro-Raman spectroscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope indicate that the CNFFs are composed of bending carbon nanoflakes with the hydrocarbon and hydroxyl functional groups, and the carbon nanoflakes become thin in a long deposition time. The structural change of carbon nanoflakes is related to the formation of structural units and the aggregation of hydrocarbon radicals near the carbon nanoflakes. Moreover, the photoluminescence (PL) properties of CNFFs were studied in a Ramalog system and a PL spectroscope. The PL results indicate that the PL intensity of CNFFs is lowered with the increase of thickness of CNFFs. The lowering of PL intensity for the thick CNFFs originates from the effect of more dangling bonds in the CNFFs. In addition, we studied the structural difference of carbon nanoflakes grown by different CVD systems and the PL difference of carbon nanoflakes in different measurement systems. The results achieved here are important to control the growth and structure of graphene-based materials and fabricate the optoelectronic devices related to carbon-based materials.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Yi Wang, Lin Li, Qijin Cheng, Chunlin He,