Article ID Journal Published Year Pages File Type
5400119 Journal of Luminescence 2013 5 Pages PDF
Abstract
White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq3 (5 nm)/QAD(y nm)/Alq3(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq3) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1'Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m2 at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88-90, which was essentially voltage-independent.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,