Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5401317 | Journal of Luminescence | 2012 | 5 Pages |
Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D4â7F5 transition of Tb3+, and at 430-470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.
Graphical abstractCe3+, Tb3+ codoped calcium silicate hydrate phosphor was synthesized by liquid-phase reaction. This was heated at 830 °C to obtain a Ce3+, Tb3+ codoped amorphous calcium silicate phosphor. Under 330 nm excitation, this phosphor showed emission peaks at 430-470 nm and 542 nm. The luminescent color could be continuously changed blue to green with increasing Tb/Ca atomic ratio. It was clarified that electron transfer from Ce3+ to Tb3+ is occurring.Download high-res image (442KB)Download full-size image