Article ID Journal Published Year Pages File Type
5401718 Journal of Luminescence 2012 6 Pages PDF
Abstract

Rare-earth doped oxyfluoride 75SiO2:25PbF2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol-gel derived glasses. Room temperature luminescence features of Eu3+, Sm3+, Tb3+, Eu3+/Tb3+, and Sm3+/Tb3+ ions incorporated into low-phonon-energy PbF2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO2:25PbF2 host herein reported is a promising contender for white-light LED applications.

► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,