Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5402419 | Journal of Luminescence | 2010 | 6 Pages |
Abstract
Highly luminescent ZnS:Cu nanoparticles were synthesized in a coprecipitation route using aqueous salt solutions and thiopropionic acid as stabilizer. The method yields a stable, transparent particle dispersion in water and allows for a good control over particle size in the range of 3-10Â nm as determined by dynamic light scattering, small angle X-ray scattering and transmission electron microscopy. Strong luminescence of the nanoparticles was observed under UV-excitation and emission colors could be adjusted in the range of blue to green by varying the Cu-doping concentration. The phase transfer of the ZnS:Cu nanoparticles into non-polar solvents using octylamine was used for a hydrophobic surface functionalization. The hydrophobic particles were used for the fabrication of transparent bulk nanocomposites via in situ-polymerization of dispersions in laurylacrylate. A high transparency of the composite materials, and the luminescence of the ZnS:Cu nanoparticles is retained during the phase transfer and the polymerization process allowing for the integration of a new luminescent functionality into the polymer material.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Andrea Klausch, Holger Althues, Christian Schrage, Paul Simon, Adam Szatkowski, Michael Bredol, Dieter Adam, Stefan Kaskel,