Article ID Journal Published Year Pages File Type
5402703 Journal of Luminescence 2009 4 Pages PDF
Abstract
We have measured the optical properties of wurtzite InN nanocolumns and film by photoluminescence (PL) measurements at temperatures from 5 to 300 K and analyzed the PL spectra by fitting with the free-electron recombination bound (FERB) model. For the top-linked InN nanocolumns, we observed strong PL intensity compared to the InN film sample. The PL spectra were asymmetrical with low-energy tails and a red-shift of the PL peak energy position was observed with increasing temperature. However, for the separated InN nanocolumns, we observed weak PL intensity and symmetrical PL spectra. Analyzing the spectra shape of the top-linked InN nanocolumns at 5 K using the FERB model, we evaluated the intrinsic bandgap energy and carrier density of InN nanocolumns to be 0.69 eV and 2.5×1017 cm−3, respectively.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,