Article ID Journal Published Year Pages File Type
5402807 Journal of Luminescence 2010 4 Pages PDF
Abstract
E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 °C for 1 h in O2 atmosphere. Through proper thermal treatment, the 1.53 μm Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 °C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 1021(photons/cm2/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 1022/cm3, and it opens a promising way towards future Si-based light source for Si photonics.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , ,