Article ID Journal Published Year Pages File Type
5403126 Journal of Luminescence 2009 7 Pages PDF
Abstract
The binding of quercetin (QCT) to ovalbumin (OVA) in aqueous solution was investigated by molecular spectroscopy and modeling at pH 7.4. The fluorescence, synchronous fluorescence and UV-absorption spectroscopies were employed to study the mode and the mechanism for this interaction. QCT binding is characterized by one high affinity binding site with the association constants of the order of 105. The distance between donor (OVA) and acceptor (QCT) was estimated according to Forster's theory of non-radiation energy transfer. Molecular docking showed that the QCT can bind to the active site of OVA. The binding dynamics was expounded by thermodynamic parameters, molecular modeling and accessible surface area calculation, which entails that hydrophobic interactions, hydrogen bonding and electrostatic forces stabilizes the interaction.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , ,