Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5403204 | Journal of Luminescence | 2007 | 6 Pages |
Abstract
Lanthanide(III)-cored complexes based on 2-thenoyltrifluoroacetone (TTA) ligand for near infrared (NIR) emission have been developed to investigate the energy transfer pathway from the antenna ligand to the Ln3+ ion. Their photophysical studies indicate the sensitization of Ln3+ luminescence by energy transfer through the excited triplet state of β-diketone ligand. Nanosecond (ns) transient absorption behavior of Ln3+-[TTA]3(terpy) complexes at room temperature is explored. The triplet-triplet absorption spectrum for Gd3+-[TTA]3(terpy) is observed under degassed condition, whereas it is hardly observed in Er3+-[TTA]3(terpy) complex. The sensitizing process in Er3+-[TTA]3(terpy), through the triplet state of TTA ligand to Er3+ ion, is also independent on the presence of oxygen. It indicates that the energy transfer rate through the excited triplet state of β-diketone ligand to Er3+ ion occurs approximately faster than that of the oxygen quenching rate.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Nam Seob Baek, Min Kook Nah, Yong Hee Kim, Hwan Kyu Kim,