Article ID Journal Published Year Pages File Type
5403305 Journal of Luminescence 2009 5 Pages PDF
Abstract
Lattice-relaxed InxAl1−xAs-graded buffer layers grown by MBE on GaAs substrate have been studied by micro-Raman scattering and photoluminescence (PL). In these heterostructures, the indium composition was gradually increased in six or four intermediate layers each of 100 nm thickness. The alloying effect in the InxAl1−xAs layers has been interpreted using the modified random element isodisplacement (MREI) formalism. The dependence in the MREI model of the longitudinal optical (LO) phonon energy and the In composition in the InAlAs alloy with PL measurements and Raman analysis allow the evaluation of disorder degree and give the In composition in the InAlAs active layers. The obtained InAs- and AlAs-like phonon frequencies from the fitting of Raman spectra are in reasonable agreement with those calculated according to the MREI model. Raman spectra show that InAs-like phonon frequencies are not strongly dependent either on the buffer structure or on the residual strain in the active layers. Using the AlAs-like LO phonon frequency shifts, we have calculated the residual strain in the InxAl1−xAs active layer. Raman results show that the slope of the grade is an important parameter that allows the growth of samples with good quality. The lower residual strain value was obtained by thick buffer with a smaller grading rate. PL measurements show that In compositions of active layers of the different studied samples are slightly higher than those measured during growth.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,