Article ID Journal Published Year Pages File Type
5403410 Journal of Luminescence 2007 10 Pages PDF
Abstract
Eu3+-doped lutetium oxide (Eu:Lu2O3) nanocrystalline films were grown on fused-silica substrates by pulsed laser deposition. Depending on deposition conditions (oxygen pressure, temperature and laser energy), the structure of the films changed from amorphous to crystalline and the cubic or monoclinic phases were obtained with varying preferential orientation and crystallite size. The monoclinic phase could be prepared for the first time at temperatures as low as 240 °C and in a narrow range of parameters. Although this phase has been previously reported for powder samples, it occurs only for high pressures and high temperatures preparation conditions. The refractive indices were measured by m-lines spectroscopy for both crystalline phases and their dispersion curve fitted by the Sellmeier expression. The specific Eu3+ fluorescence properties of the different phases, monoclinic and cubic, were registered and show modifications due to the disorder induced by the nanometric size of the crystallites, emphasised in particular by quasi-selective excitation in the charge transfer band.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,