Article ID Journal Published Year Pages File Type
5403727 Journal of Luminescence 2007 5 Pages PDF
Abstract
The performance of organic light emitting device (OLED) structures, based on identically fabricated Alq3/TPD active regions, with various anode and cathode electrode structures are compared, and performance differences related to the different anode structure. The best performance was achieved with a conductive polymer, 3,4-polyethylenedioxythiopene-polystyrenesultonate (PEDOT), used as an anode layer, yielding a brightness of 1720 cd/m2 at 25 V, a turn-on voltage of 3 V, and electroluminescence (EL) efficiency and external quantum efficiency of 8.2 cd/A and 2%, respectively, at a brightness of 100 cd/m2 and 5 V. Compared to a baseline device (TPD/Alq3/Al), PEDOT anodes substantially reduce the turn-on voltage and made current injection almost linear after turn-on, whiles devices incorporating a LiF and CuPc layers significantly improved device efficiency while slightly improving turn-on voltage and maintaining superlinear I-V injection. This is attributed to the reduced barrier at the organic-organic interface in PEDOT, the 'ladder' effect of stepping the band offset over several interfaces, and the favorable PEDOT film morphology. The benefit of the PEDOT anode is clearly seen in the improvement in device brightness and the high external quantum efficiency obtained.
Keywords
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,