Article ID Journal Published Year Pages File Type
5404000 Journal of Luminescence 2006 5 Pages PDF
Abstract
Temperatures of 1000 °C and higher are a significant problem for the incorporation of erbium-doped silicon nanocrystal devices into standard silicon technology, and make the fabrication of contacts and reflectors in light emitting devices difficult. In the present work, we use energy-filtered TEM imaging techniques to show the formation of size-controlled amorphous silicon nanoclusters in SiO films annealed between 400 and 500 °C. The PL properties of such films are characteristic of amorphous silicon, and the spectrum can be controlled via a statistical size effect-as opposed to quantum confinement-that has previously been proposed for porous amorphous silicon. Finally, we show that amorphous nanoclusters sensitize the luminescence from the rare-earth ions Er, Nd, Yb, and Tm with excitation cross-sections similar in magnitude to erbium-doped silicon nanocrystal composites, and with a similar nonresonant energy transfer mechanism.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,