Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5404050 | Journal of Luminescence | 2006 | 4 Pages |
Abstract
In this work we studied the influence of high-energy proton irradiation on the optical and structural properties of an Si/Ge superlattice (SL) with embedded Ge quantum dots (QDs). The presence of QDs in the as-grown samples was established by transmission electron microscopy and photoluminescence (PL). The samples were irradiated with 2.0Â MeV protons to fluences in the range 2Ã1012-2Ã1014Â cm-2. The structural characterization made by X-ray reciprocal space mapping, X-ray reflection and Rutherford backscattering/channelling has shown no changes in the as-grown heterostructure due to the irradiation. In spite of the expected high concentration of nonradiative recombination centres caused by the proton-induced damage, the PL emission from the Ge dots has been observed even for the highest irradiation fluence. The studied QD-in-SL structure has shown an extraordinarily high radiation hardness when compared with previously studied QD heterostructures.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
A. Fonseca, N.A. Sobolev, J.P. Leitão, E. Alves, M.C. Carmo, N.D. Zakharov, P. Werner, A.A. Tonkikh, G.E. Cirlin,