Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5406181 | Journal of Magnetic Resonance | 2011 | 27 Pages |
Abstract
Radiofrequency pulse sequences are described which have the same overall effect as a single 90° or 180° pulse but which compensate the undesirable effects of resonance offset and spatial inhomogeneity of the radiofrequency field H1. These “composite” pulses are built up from a small number of conventional pulses which rotate the nuclear magnetization vectors about different axes in the rotating frame, while in the intervals between pulses a limited amount of free precession may be allowed to occur. Insight into the way in which pulse imperfections are compensated is obtained by computer simulation of trajectories of families of nuclear spin “isochromats” representing a distribution of H1 intensity or resonance offset. Composite 90° pulses are suggested as a method of reducing systematic errors in spin-lattice relaxation times derived from progressive saturation or saturation-recovery experiments, and as the preparation pulse of a spin-locking experiment. A test of the effectiveness of the composite 180° pulse sequence has been made by using it for population inversion in a spin-lattice relaxation measurement, where T1 is derived from the null point in the recovery curve, a technique known to be very sensitive to pulse imperfections.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Ray Freeman, Stewart P. Kempsell, Malcolm H. Levitt,