Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5406693 | Journal of Magnetic Resonance | 2010 | 10 Pages |
Abstract
The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for 17O- and 69/71Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO3, BaZrO3, BaSnO3, BaTiO3, LaAlO3, LaGaO3, SrZrO3, MgSiO3 and Ba2In2O5), and gallate (α- and β-Ga2O3, LiGaO2, NaGaO2, GaPO4 and LaGaO3) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO5 site occurring in LaGaGe2O7 is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar ηQ-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Derek S. Middlemiss, Frédéric Blanc, Chris J. Pickard, Clare P. Grey,