Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5406831 | Journal of Magnetic Resonance | 2009 | 9 Pages |
Abstract
A novel approach with respect to single point imaging (SPI), compressed sensing, is presented here that is shown to significantly reduce the loss of accuracy of reconstructed images from under-sampled acquisition data. SPI complements compressed sensing extremely well as it allows unconstrained selection of sampling trajectories. Dynamic processes featuring short T2â NMR signal can thus be more rapidly imaged, in our case the absorption of moisture by a cereal-based wafer material, with minimal loss of image quantification. The absolute moisture content distribution is recovered via a series of images acquired with variable phase encoding times allowing extrapolation to time zero for each image pixel and the effective removal of T2â contrast.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
P. Parasoglou, D. Malioutov, A.J. Sederman, J. Rasburn, H. Powell, L.F. Gladden, A. Blake, M.L. Johns,