Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5406911 | Journal of Magnetic Resonance | 2009 | 7 Pages |
Abstract
A single voxel proton NMR double quantum filter (DQF) for measurement of glutathione (GSH) in human brain at 3T is reported. Yield enhancement for the CH2 resonances of the cysteine moiety at 2.95 ppm has been achieved by means of dual encoding. After the preparation of double quantum and zero quantum coherences (DQC and ZQC) at equal magnitude, the first DQC encoding was followed by interchange of DQC and ZQC, and another DQC encoding. The multi-quantum coherences were fully utilized to generate a GSH target signal at â¼2.95 ppm. The optimal echo time and the editing efficiency were obtained with numerical analysis of the filtering performance and phantom measurements. The dual-DQC encoding method provided GSH yield greater by a factor of 2.1 than single-DQC encoding for identical slice-selective RF pulses in phantom tests. Using the phantom relaxation times and the ratio of edited GSH to N-acetylaspartate (NAA) 2.0-ppm peak areas, the concentration of GSH in the medial parietal cortex of the healthy human brain in vivo was estimated to be 1.0 ± 0.3 mM (mean ± SD, n = 7), with reference to NAA at 10 mM.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Changho Choi, Chenguang Zhao, Ivan Dimitrov, Deborah Douglas, Nicholas J. Coupland, Sanjay Kalra, Halima Hawesa, Jeannie Davis,