Article ID Journal Published Year Pages File Type
5407188 Journal of Magnetic Resonance 2008 8 Pages PDF
Abstract
A live, in-situ metabolomics capability was developed for prokaryotic cultures under controlled growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuel production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study also showed that E. aggregans produces lactate end product in significant concentrations-a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics/systems biology methods are discussed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,