Article ID Journal Published Year Pages File Type
5407205 Journal of Magnetic Resonance 2008 5 Pages PDF
Abstract
Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the 15N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken α-spectrin, which was re-crystallized in H2O/D2O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated CuII to enable rapid data acquisition.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,