Article ID Journal Published Year Pages File Type
5407604 Journal of Magnetic Resonance 2006 9 Pages PDF
Abstract
The unambiguous determination of velocities with spatial resolution in a multiecho PFG NMR sequence strongly depends on the homogeneity of the B1 field. This affects, in particular, the use of surface coils that bear considerable potential for on-line flow monitoring where a fast-imaging sequence can become vital. However, even with most rf coils dedicated for imaging applications, B1 inhomogeneities are sufficiently large to generate severe problems in performing velocity-imaging experiments. In this paper, the use of a combination of different phase cycles in Carr-Purcell sequences is discussed. The suggested phase cycling scheme tolerates large flip angle imperfections arising in inhomogeneous B1 fields, and thus allows acquisition of a maximum number of echoes within a pulse train. The performance of the velocity-imaging sequence is proven by using phantom samples developing known laminar flow patterns.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , ,