Article ID Journal Published Year Pages File Type
5410338 Journal of Molecular Liquids 2016 15 Pages PDF
Abstract
It was found that the velocities of the two investigated nanoparticles decrease significantly with an increase in the solid volume fraction. In addition, the effective electrical conductivity parameter is mandatory and should be taken into account on applying the magnetic field; otherwise a spurious physical sight is to be gained. As expected, the magnetic parameter decelerates the fluid velocity and increases its temperature, as well, for all nanoparticles considered and for all investigated cases of the suction/injection parameter, the temperature profiles increase as radiation parameter increases. Further, the fluid suction decreases the fluid velocity and, therefore, thickness of the hydrodynamic boundary layer, regarding, the fluid temperature and thermal boundary layer decreases as well. However, fluid injection produces the opposite effect.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,