Article ID Journal Published Year Pages File Type
5410772 Journal of Molecular Liquids 2015 5 Pages PDF
Abstract
In the present article, we have studied the effect of copper nano-particles on the thermal, optical and dielectric parameters of a liquid crystalline material 2,3,6,7,10,11-hexabutyloxytriphenylene (in short HAT4) showing wide temperature range (~ 65 °C) hexatic columnar mesophase. A composite has been prepared by dispersing 0.6 wt.% of copper nano-particles. UV-vis spectroscopy has been used to record the absorption spectra. It has been observed that the presence of copper nano-particles introduces surface plasmon resonance and reduces the optical band gap of HAT4. Though isotropic to mesophase transition temperature is unaffected but mesophase-crystal transition temperature has decreased and hence range of the mesophase has enhanced due to the presence of copper nano-particles. While dc conductivity has increased by about two orders of magnitudes, dielectric permittivity has also moderately increased. With the enhanced properties, HAT4-copper nano-particle composite is useful for one dimensional conduction and photovoltaic applications.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,