Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5413338 | Journal of Molecular Liquids | 2008 | 6 Pages |
Abstract
Densities (Ï) and speeds of sound (u) for the binary mixtures of 1-hexanol with n-hexane, n-octane and n-decane have been measured over the entire composition range at 298.15, 303.15 and 308.15 K. The dynamic viscosities (η) for these systems have been measured at 298.15 K. From experimental data, excess molar volumes (VmE), molar isentropic compressibility (Ks,m), excess molar isentropic compressibility (Ks,mE), deviation in speed of sound (uD) from their ideal values (uid) in an ideal mixture, and excess free volumes (VfE) have been calculated. The excess functions have also been correlated with the Redlich-Kister polynomial equation. The viscosity data have been analysed in terms of some semi-empirical equations. The theoretical values of speed of sound (u) and isentropic compressibility (κS) have also been estimated using the Prigogine-Flory-Patterson (PFP) theory with the van der Waals (vdW) potential energy model and the results have been compared with experimental values. The effect of chain-length of n-alkanes as well as the temperature on the excess properties has also been studied.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Gyan P. Dubey, Monika Sharma,