Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5415146 | Journal of Molecular Spectroscopy | 2010 | 8 Pages |
Abstract
Resonance-enhanced multiphoton ionization combined with electronic ground state depletion spectroscopy of jet-cooled 2-methylallyl (C4H7) radicals provides vibronic spectra of the 3s and 3p Rydberg states. Analysis of the vibronic structure following one-photon and two-photon excitation of rovibronically cold 2-methylallyl radicals and its isotopologues C4H4D3 and C4D7 reveals transitions to more than 30 vibrational levels in the 3s Rydberg state that are identified and reassigned on the basis of predictions from ab initio calculations and results from pulsed-field-ionization zero-kinetic-energy photoelectron spectra obtained with resonant multiphoton excitation via selected intermediate states. Depletion spectroscopy reveals transitions to short-lived 3p Rydberg states that have a large oscillator strength.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Michael Gasser, Jann A. Frey, Jonas M. Hostettler, Andreas Bach,