Article ID Journal Published Year Pages File Type
5415306 Journal of Molecular Spectroscopy 2010 6 Pages PDF
Abstract

The high-resolution Fourier transform infrared spectrum of phosphorus trifluoride PF3 have been reinvestigated in the ν4 perpendicular band region around 347 cm−1. Thanks to recent pure rotational measurements, 595 new infrared transitions of the ν4 band have been assigned extending the rotational quantum number values up to Kmax = 66 and Jmax = 67. As a consequence of this extension, a sophisticated model containing a large number of parameters and interaction constants was adopted for the analysis of the IR transitions of the ν4 fundamental band of PF3. A merge of the IR transitions and the reported MW/MM/RF data within the v4 = 1 excited level yielded an accurate rotational ground state C0 value, 0.159970436 (69) cm−1, which was used to determine an improved GS structure, r0(P-F) = 1.56324405 (11) Å and ∡(FPF) = 97.752232 (29)°. All experimental data have been refined applying various reduction forms of the effective rovibrational Hamiltonian developed for an isolated degenerate state of a symmetric top molecule. The v4 = 1 excited state of the PF3 oblate molecule was treated with models taking into account ℓ- and k-type intravibrational resonances. Parameters up to sixth order have been accurately determined and the unitary equivalence of the derived parameter sets in different reductions was demonstrated.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,