Article ID Journal Published Year Pages File Type
5415428 Journal of Molecular Spectroscopy 2009 12 Pages PDF
Abstract
An exact variational algorithm is presented for calculating vibrational energy levels of pentaatomic molecules without any dynamical approximation. The quantum mechanical Hamiltonian of the system is expressed in a set of orthogonal coordinates defined by four scattering vectors in the body-fixed frame. The eigenvalue problem is solved using a two-layer Lanczos iterative diagonalization method in a mixed grid/basis set. A direct product potential-optimized discrete variable representation (PO-DVR) basis is used for the radial coordinates while a non-direct product finite basis representation (FBR) is employed for the angular variables. The two-layer Lanczos method requires only the actions of the Hamiltonian operator on the Lanczos vectors, where the potential-vector products are accomplished via a pseudo-spectral transform technique. By using Jacobi, Radau and orthogonal satellite vectors, we have proposed 21 types of orthogonal coordinate systems so that the algorithm is capable of describing most five-atom systems with small and/or large amplitude vibrational motions. Finally, an universal program (PetroVib) has been developed. Its applications to the molecules CH4andH3O2-, and the van der Waals cluster He3Cl2 are also discussed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,