Article ID Journal Published Year Pages File Type
5415606 Journal of Molecular Spectroscopy 2009 4 Pages PDF
Abstract
The pure rotational spectrum of ZnS (X1Σ+) has been measured using direct-absorption millimeter/sub-millimeter techniques in the frequency range 372-471 GHz. This study is the first spectroscopic investigation of this molecule. Spectra originating in four zinc isotopologues (64ZnS, 66ZnS, 68ZnS, and 67ZnS) were recorded in natural abundance in the ground vibrational state, and data from the v = 1 state were also measured for the two most abundant zinc species. Spectroscopic constants have been subsequently determined, and equilibrium parameters have been estimated. The equilibrium bond length was calculated to be re ∼ 2.0464 Å, which agrees well with theoretical predictions. In contrast, the dissociation energy of DE ∼ 3.12 eV calculated for ZnS, assuming a Morse potential, was significantly higher than past experimental and theoretical estimates, suggesting diabatic interaction with other potentials that lower the effective dissociation energy. Although ZnS is isovalent with ZnO, there appear to be subtle differences in bonding between the two species, as suggested by their respective force constants and bond length trends in the 3d series.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,