Article ID Journal Published Year Pages File Type
5416228 Journal of Molecular Spectroscopy 2006 17 Pages PDF
Abstract
More than 250 rotationally resolved vibrational bands of the A2B2-X2A1 electronic transition of 15NO2 have been observed in the 14 300-18 000 cm−1 range. The bands have been recorded in a recently constructed setup designed for high resolution spectroscopy of jet cooled molecules by combining time gated fluorescence spectroscopy and molecular beam techniques. The majority of the observed bands has been rotationally assigned and can be identified as transitions starting from the vibrational ground state or from vibrationally excited (hot band) states. An exceptionally strong band is located at 14 851 cm−1 and studied in more detail as a typical benchmark transition to monitor 15NO2 in atmospheric remote sensing experiments. Standard rotational fit routines provide band origins, rotational and spin rotation constants. A subset of 177 vibronic levels of 2B2 vibronic symmetry has been analyzed in the energy range between 14 300 and 17 250 cm−1, in terms of integrated density and using Next Neighbor Distribution. It is found that the overall statistical properties and polyad structure of 15NO2 are comparable to those of 14NO2 but that the internal structures of the polyads are completely different. This is a direct consequence of the X2A1-A2B2 vibronic mixing.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,