Article ID Journal Published Year Pages File Type
5416473 Journal of Molecular Structure: THEOCHEM 2009 14 Pages PDF
Abstract

A set of structures encompassing 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative together with their various tautomeric structures; the 5-membered ring 1,3-thiazolidin-4-one products resulting from the reaction of 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative with dimethyl acetylenedicarboxylate (DMAD) together with the alternative 6-membered ring isomeric reaction products as well as other potential isomeric structures; and the 6-membered ring 1,3-thiazin-4-one product resulting from the reaction of 2-methyl-1-(9-acridinyl)thiosemicarbazide with methyl propiolate (MP) together with the alternative 5-membered ring isomeric reaction product were all extensively studied by molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory. The ring-chain tautomerism of the thiosemicarbazides, the regio- and stereoselectivity of the reactions, the adopted conformations and E/Z configurations of the products, the prototropic tautomerism of all the compounds, and the reasons for the predominance of the s-cis conformation of the Z configuration of the 1,3-thiazolidin-4-one product in particular were all extensively analyzed. Comparison of the modeled structures were also made to the 1,3-thiazolidin-4-one and 1,3-thiazin-4-one structures of the methyl derivative as well as 1-(9-acridinyl)thiosemicarbazide available from X-ray crystallographic analysis. Tactics utilizing spectroscopic methods {IR frequencies (ν) and NMR chemical shifts (δ), scalar coupling constants (J), and NOEs (η)} in conjunction with molecular modeling calculations of the spectral parameters {frequency calculations (ν) and NMR δ using the GIAO method and J by calculation of the Fermi contact term} were evaluated in terms of proving 5- or 6-membered ring formation.

Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry