Article ID Journal Published Year Pages File Type
5416494 Journal of Molecular Structure: THEOCHEM 2010 7 Pages PDF
Abstract
The effect of methanol as a solvent on 1,3-dipolar cycloaddition reaction of methyldiazoacetate to alkenes has been studied by DFT calculations. Reaction reactivity has been qualitatively analyzed by the frontier molecular orbital (FMO) approach and quantitatively estimated by hard and soft acid base (HSAB) theory. Application of the FMO theory to the (3 + 2)-cycloaddition process testifies that the specific solvation of methanol with reagents increases reaction rate in comparison to the gas phase, since it is reflected in Δε reduction. From the point of view of the HSAB theory was shown that the complexation of methanol with reagents plays a predominating role in the acceleration of the (3 + 2)-cycloaddition reaction, however, the neglecting of the solvent influence as polarized continuum will cause an appreciable error in the calculation results and, consequently, is not justified.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,