Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5416494 | Journal of Molecular Structure: THEOCHEM | 2010 | 7 Pages |
Abstract
The effect of methanol as a solvent on 1,3-dipolar cycloaddition reaction of methyldiazoacetate to alkenes has been studied by DFT calculations. Reaction reactivity has been qualitatively analyzed by the frontier molecular orbital (FMO) approach and quantitatively estimated by hard and soft acid base (HSAB) theory. Application of the FMO theory to the (3 + 2)-cycloaddition process testifies that the specific solvation of methanol with reagents increases reaction rate in comparison to the gas phase, since it is reflected in Îε reduction. From the point of view of the HSAB theory was shown that the complexation of methanol with reagents plays a predominating role in the acceleration of the (3 + 2)-cycloaddition reaction, however, the neglecting of the solvent influence as polarized continuum will cause an appreciable error in the calculation results and, consequently, is not justified.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
S.L. Khursan, A.B. Samarkina,