Article ID Journal Published Year Pages File Type
5416658 Journal of Molecular Structure: THEOCHEM 2010 7 Pages PDF
Abstract
We present simulation of the UV-visible spectra of acridine orange, a widely used photosensitizer for in vivo studies due to its highly environment-dependent spectroscopic properties. This dye has been investigated both in its protonated and neutral forms, either isolated or embedded in a pumpkin-shaped macromolecular cycle (cucurbit-7-uril), using time-dependent density functional theory techniques. To model this macromolecular cycle, two strategies are taken into account, allowing decoupling of the geometric and electrostatic influences of the host on the guest molecules. Experimental data are well-reproduced when using an embedding electrostatic technique, suggesting that such a method holds great promise to investigate the environmental effects on dye absorption spectra at low computational cost.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,