Article ID Journal Published Year Pages File Type
5417555 Journal of Molecular Structure: THEOCHEM 2008 6 Pages PDF
Abstract
The reaction mechanism of cyanosilylation of hypnone catalyzed by 1,1,3,3-tetramethylguanidine (TMG) was investigated using the density functional theory at the Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional (B3LYP)/6-31G(d), B3LYP/6-31G(d, p) and B3LYP/6-311++G(d, p) levels. The results show that the title reaction occurs through two processes, the formation of the intermediate five through the interaction of TMG with trimethylsilyl cyanide (TMSCN) and the reaction between the intermediate five and hypnone. The formation of intermediate five controls the whole reaction with a Gibbs free energy barrier of 31.84 kcal/mol. In addition, the results indicate that the catalyst TMG significantly promotes the title reaction and changes the mechanism. The results are in reasonable agreement with the experimental observations. Our results reveal that the overall reaction is stepwise and exoergonic in solvent-free conditions at room temperature.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , ,