Article ID Journal Published Year Pages File Type
5418681 Journal of Molecular Structure: THEOCHEM 2007 5 Pages PDF
Abstract
Three density-functional methods (B3P86, B3PW91, and B3LYP) are employed to investigate the O-NO2 bond lengths, frontier orbital energies, and O-NO2 bond dissociation energies (BDEs) of n-propyl nitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN), triethylene glycol dinitrate (Tri-EGDN), and tetraethylene glycol dinitrate (Tetra-EGDN). It is found that the O-NO2 bond lengthens (destabilizes) in the order of IPN, NPN, EHN, Tetra-EGDN, and Tri-EGDN. From the data of frontier orbital energies (EHOMO, ELUMO), and energy gaps (ΔE), we estimate the relative thermal stability ordering of five nitrates and their corresponding radicals. The predicted BDEs of O-NO2 bond in NPN, IPN, EHN, Tri-EGDN, and Tetra-EGDN, are 176.6, 174.5, 168.1, 156.1, and 159.3 kJ mol−1, respectively. Based on the finding that the present results of BDEs are well coincident with the experimental results of apparent activation energies from the literature, we can draw a conclusion that the experimental thermolysis of five nitrates is only unimolecular homolytical cleavage of the O-NO2 bonds.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,