Article ID Journal Published Year Pages File Type
54189 Catalysis Today 2015 13 Pages PDF
Abstract

•FeOx/SBA-15 was successfully utilized for toluene removal in plasmas.•Bulk-oxygen in the catalyst was involved in the toluene oxidation.•The iron loaded on SBA-15 promoted oxygen adsorption over the catalyst surface.•The pathways of toluene decomposition were proposed.

FeOx/SBA-15 catalysts were prepared via impregnation and utilized for toluene removal in dielectric barrier discharge (DBD) plasma at atmospheric pressure and room temperature. Toluene removal was investigated in the environment of various mixed N2/O2 plasmas, showing that toluene removal efficiency and COx selectivity were greatly increased by FeOx/SBA-15 and that the organic intermediates were greatly reduced by catalysts. In pure N2 plasma, the bulk oxygen in the catalyst was involved in the toluene oxidation, and the 3%FeOx/SBA-15 catalyst showed the optimal toluene oxidation activity. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption–desorption, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and O2 temperature-programmed desorption (O2-TPD), showing that toluene oxidation was closely related to the highly dispersed nature of iron on the SBA-15 surface, the reduction temperature of Fe2+ and the oxygen adsorption ability of the catalyst. The pathways of toluene decomposition in the combination of FeOx/SBA-15 with a non-thermal plasma (NTP) system were proposed based on the identified intermediates.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (152 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,