Article ID Journal Published Year Pages File Type
5420591 Solid State Nuclear Magnetic Resonance 2010 5 Pages PDF
Abstract
We have measured the solid state nuclear magnetic resonance (NMR) 1H spin-lattice relaxation rate from 93 to 340 K at NMR frequencies of 8.5 and 53 MHz in 5-t-butyl-4-hydroxy-2-methylphenyl sulfide. We have also determined the molecular and crystal structures from X-ray diffraction experiments. The relaxation is caused by methyl and t-butyl group rotation modulating the spin-spin interactions and we relate the NMR dynamical parameters to the structure. A successful fit of the data requires that the 2-methyl groups are rotating fast (on the NMR time scale) even at the lowest temperatures employed. The rotational barrier for the two out-of-plane methyl groups in the t-butyl groups is 14.3±2.7 kJ mol−1 and the rotational barrier for the t-butyl groups and their in-plane methyl groups is 24.0±4.6 kJ mol−1. The uncertainties account for the uncertainties associated with the relationship between the observed NMR activation energy and a model-independent barrier, as well as the experimental uncertainties.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,