Article ID Journal Published Year Pages File Type
5420767 Solid State Nuclear Magnetic Resonance 2009 8 Pages PDF
Abstract
13C cross-polarization/magic-angle spinning (CP/MAS) solid-state NMR spectroscopy has been employed to analyze four vitamin D compounds, namely vitamin D3 (D3), vitamin D2 (D2), and the precursors ergosterol (Erg) and 7-dehydrocholesterol (7DHC). The 13C NMR spectrum of D3 displays a doublet pattern for each of the carbon atoms, while that of Erg contains both singlet and doublet patterns. In the cases of 7DHC and D2, the 13C spectra display various multiplet patterns, viz. singlets, doublets, triplets, and quartets. To overcome the signal overlap between the 13C resonances of protonated and unprotonated carbons, we have subjected these vitamin D compounds to 1D 1H-filtered 13C CP/MAS and {1H}/13C heteronuclear correlation (Hetcor) NMR experiments. As a result, assisted by solution NMR data, all of the 13C resonances have been successfully assigned to the respective carbon atoms of these vitamin D compounds. The 13C multiplets are interpreted due to the presence of s-cis and s-trans configurations in the α- and β-molecular conformers, consistent with computer molecular modeling determined by molecular dynamics and energy minimization calculations. To further characterize the ring conformations in D3, we have successfully extracted chemical shift tensor elements for the 13C doublets. It is demonstrated that 13C solid-state NMR spectroscopy provides a robust and high sensitive means of characterizing molecular conformations in vitamin D compounds.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,