Article ID Journal Published Year Pages File Type
5420844 Solid State Nuclear Magnetic Resonance 2009 8 Pages PDF
Abstract
An experimental method for the heteronuclear dipolar recoupling of half-integer quadrupole nuclei is proposed. The idea is to manipulate the central transition based on the recoupling technique of spin-polarization-inversion rotary resonance. This method allows the extraction of structural parameters under fast magic-angle spinning. Its validity has been examined by the average Hamiltonian theory and numerical simulations. The initial rotational-echo dephasing arising from the dipolar evolution can be approximated by a parabolic function, from which the heteronuclear van Vleck second moment can be estimated. A factor, estimated from two-spin simulations, is required to account for the effects of the quadrupolar coupling and is rather independent of the geometry and the orders of the spin systems. Our method can facilitate the structural characterization of materials containing half-integer quadrupole nuclei under high-resolution condition. Experimental verification has been carried out on two aluminophosphate systems, namely, AlPO4-5 and AlPO4-11.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,