Article ID Journal Published Year Pages File Type
5421963 Surface Science 2015 10 Pages PDF
Abstract
Structural modifications during electrochemical measurements on well defined Pt modified Ru(0001) electrode surfaces, which were prepared and characterized under ultrahigh vacuum (UHV) conditions, and the influence of the restructuring on the CO oxidation reaction have been investigated in a set-up combining surface preparation and scanning tunneling microscopy characterization under UHV conditions (UHV-STM) and electrochemical flow cell measurements. Bare Ru(0001) and Pt monolayer island modified Ru(0001) electrodes with different Pt coverages were investigated, together with a Pt0.3Ru0.7/Ru(0001) monolayer surface alloy for comparison. Comparing bulk CO oxidation measurements performed upon cycling in base electrolyte (0.5 M H2SO4) to 0.90 VRHE with similar measurements performed after potential cycling to 1.05 VRHE, we find pronounced differences in the current-voltage characteristics, with a distinct new peak at low potentials in the positive-going scan in the latter case, which is centered at 0.67 VRHE. STM imaging performed before and after the electrocatalytic measurements revealed a distinct restructuring of the Pt monolayer island modified Ru(0001) surfaces upon potential cycling to 1.05 VRHE, while cycling to 0.90 VRHE maintains the original structure and morphology of the bimetallic surface. In contrast, for the bare Ru(0001) electrode, restructuring of steps is observed already upon potential cycling to 0.9 VRHE. Implications of these findings on the electrochemical stability of the electrodes as well as on the mechanistic understanding of the CO oxidation reaction on bimetallic PtRu electrode surfaces and on the activity of different mono- and bimetallic nanostructures are discussed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,