Article ID Journal Published Year Pages File Type
5422146 Surface Science 2014 6 Pages PDF
Abstract
It's widely accepted that when the scale goes down deeply into nanometer, the surfaces of materials will play a crucial role. In equilibrium, the as-fabricated surfaces are usually determined by Wulff construction. However, the technique to rebuild the surface in the scale of as fine as 1 nm, especially to build the off-equilibrium high energy facets is still rare. Here we provide a simple but effective solution for rebuilding the surfaces on the basis of kinetics over thermodynamics. Our in situ transmission electron microscopy (TEM) experiments demonstrate that the flat surfaces of W naturally decompose into off-equilibrium faceted surfaces when electrical current passes in certain directions. The experiments and simulations confirmed that, by using a polar plot and the data of surface diffusivities, the stability of any kind of surfaces as well as the exact post-treatment structures (surface type and periodical length) can be determined. This technique can be generally extended to most conductive solid surfaces.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,