Article ID Journal Published Year Pages File Type
5422554 Surface Science 2013 15 Pages PDF
Abstract
Two-dimensional (2D) slabs and monoperiodic (1D) nanowires orthogonal to the slab surface of rutile-based TiO2 structure terminated by densely-packed surfaces and facets, respectively, have been simulated in the current study. The procedure of structural generation of nanowires (NWs) from titania slabs (2D → 1D) is described. We have simulated: (i) (110), (100), (101) and (001) slabs of different thicknesses as well as (ii) [001]- and [110]-oriented nanowires of different diameters terminated by either four types of related {110} facets or alternating {11¯0} and {001} facets, respectively. Nanowires have been described using both the Ti atom-centered rotation axes as well as the hollow site-centered axes passing through the interstitial sites between the Ti and O atoms closest to the axes. For simulations on TiO2 slabs and NWs, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with the total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO) implemented in CRYSTAL09 code. Both structural and electronic properties of enumerated rutile-based titania slabs and nanowires have been calculated. According to the results of our surface energy calculations, the most stable rutile-based titania slab is terminated by (110) surfaces whereas the energetically favorable [001]-oriented NWs are also terminated by {110} facets only, thus confirming results of previous studies.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, ,