Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5422807 | Surface Science | 2012 | 5 Pages |
Abstract
The interaction of H2 with clean, Ni and Nb doped Mg(0001) surface are investigated by first-principles calculations. Individual Ni and Nb atoms within the outermost surface can reduce the dissociation barrier of the hydrogen molecule. They, however, prefers to substitute for the Mg atoms within the second layer, leading to a weaker catalytic effect for the dissociation of H2, a bottleneck for the hydriding of MgH2. Interestingly, co-doping of Ni and Nb stabilizes Ni at the first layer, and results in a significant reduction of the dissociation barrier of H2 on the Mg surface, coupled with an increase of the diffusion barrier of H. Although codoped Ni and Nb shows no remarkable advantage over single Nb here, it implies that the catalytic effect could be optimized by co-doping of “modest” transition metals with balanced barriers for dissociation of H2 and diffusion of H on Mg surfaces.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Ming Chen, Zhen-Zhun Cai, Xiao-Bao Yang, Min Zhu, Yu-Jun Zhao,