Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5423240 | Surface Science | 2010 | 6 Pages |
We have studied the effect of K on the adsorption of methanol on the β-Mo2C(001) surface and compared our experimental data with theoretical calculations. We have also performed high resolution electron energy loss spectroscopy (HREELS) (LK, ELS3000). For calculations we used the density functional theory under the VASP implementation. The most favorable sites for methanol adsorption are on top of a Mo atom in the clean surface and on top of a K atom in the pre-dosed surface. The changes in the work function fit our model as the surface withdraws charge from the adsorbate. The changes in the computed vibrational frequencies also agree with the HREELS results at very low coverage. The C-O bond distance increases while the O-H bond decreases making a C-O bond breakage a possibility on K covered surfaces.