Article ID Journal Published Year Pages File Type
5423491 Surface Science 2010 9 Pages PDF
Abstract
The decomposition pathways of methanol and water on Pt-modified W(110) bimetallic surfaces have been investigated using density functional theory (DFT), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). The reaction of methanol on submonolayer and monolayer Pt-modified W(110) surfaces is compared to that on clean Pt(111) and W(110). Similar to clean W(110), the Pt/W(110) bimetallic surfaces remain active toward the dissociation of methanol, although the reaction pathway leading to the production of CH4 is reduced on the bimetallic surfaces. The Pt/W(110) surfaces are also active toward the decomposition of water. These results are compared with previous studies of the reactions of H2 and ethylene on Pt/W(110) bimetallic surfaces to reveal the different Pt-modification effects for the dissociation of oxygen-containing molecules.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,