Article ID Journal Published Year Pages File Type
5424455 Surface Science 2009 8 Pages PDF
Abstract
The capability of theoretical durability studies to offer an efficient alternative methodology for predicting the potential performance of catalysts has improved in recent years. In this regard, multi-scale theoretical methods for predicting sintering behavior of Pt on various catalyst supports are being developed. Various types of Pt diffusions depending on support were confirmed by the micro-scale ultra accelerated quantum chemical molecular dynamics (UA-QCMD) method. Moreover, macro-scale sintering behavior of Pt/γ-Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts were studied using a developed 3D sintering simulator. Experimental results were well reproduced. While Pt on γ-Al2O3 sintered significantly, Pt on ZrO2 sintered slightly and Pt on CeO2 demonstrated the highest stability against sintering.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , , , , ,