Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5424757 | Surface Science | 2009 | 6 Pages |
Abstract
The CO oxidation reaction on Pt-group metals (Pt, Rh, and Pd) has been investigated at low (⩽10â3 Torr) and near atmospheric (1-102 Torr) pressures in a batch reactor under steady-state conditions and at various gaseous reactant compositions using PM-IRAS and kinetic measurements. The results indicate that Langmuir-Hinshelwood kinetics adequately provides a general description of the kinetic trends over a wide range of pressures provided that mass transfer effects are considered. At high pressures, the reaction kinetics fall into three regimes: a CO-inhibited low temperature regime where the reaction rate is determined by CO desorption; a mass transfer limited regime at high temperatures; and a transient, high-rate regime which lies in between the other two regimes. The data show that the most reactive surface phase, at both low and high pressures, is a CO-uninhibited phase. This surface phase is not an oxide phase, but a surface phase that contains primarily chemisorbed atomic oxygen and a low coverage of CO.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
F. Gao, S.M. McClure, Y. Cai, K.K. Gath, Y. Wang, M.S. Chen, Q.L. Guo, D.W. Goodman,